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Abstract. Resource limitations often allow only a subset of species to be counted. But using subsets may
bias inferences on spatial or temporal trends in biodiversity. Using data from a video survey on reefs in the
Gulf of Mexico for which all fish species observed were counted (243 species), we investigated how the use
of reduced species lists (RSLs) can impact perceived patterns in biodiversity. We estimated four common
biodiversity metrics (species richness, and Margalef’s, Shannon’s, and Simpson’s indices) at each of 2115
sampling locations, using the total species list and RSLs. For all diversity metrics, correlations between esti-
mates using the total species list and RSLs increased with the number of species in the list. Using a boot-
strap approach, we randomly generated hypothetical lists equal in length to each empirical RSL to
evaluate their performance; empirical RSLs tended to perform similar to random lists of equivalent length
when estimating species richness or Margalef’s index, and tended to outperform most hypothetical RSLs
when estimating Shannon’s and Simpson’s indices. To understand how to create better performing RSLs,
we extended the bootstrap analysis to select RSLs of all possible lengths, using four different selection
methods related to species commonness; the functional relationships between correlation and number of
species in an RSL were similar among metrics but were very different among selection methods. With each
hypothetical RSL, we tested common biodiversity hypotheses such as relationships with depth and lati-
tude and compared the outcomes with the best estimate of true relationships identified using the total list.
Longer lists comprised of the most common species more often identified the true relationship, but results
showed complex patterns. Many short lists of the most common species yielded results opposite the true
relationships, and many lists of intermediate length failed to identify any relationship while the total list
showed a significant trend. Overall, these analyses show that sampling methods used for biodiversity stud-
ies should be as unselective as possible, and datasets based on more selective methods should be inter-
preted carefully and should not be expected to reflect true patterns in biodiversity.
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INTRODUCTION

Simple measures of species diversity have long
been used in community ecology, often to test
hypotheses of temporal and spatial trends
(Dobzhansky 1950, Stevens 1989, Willig et al.
2003). In this context, one must assume that

species are equally detectable for all sampling
units (Boulinier et al. 1998), and thus, it is advis-
able to use consistent sampling techniques and
equipment when making direct comparisons of
diversity estimates. In practice, this can be diffi-
cult to achieve, as the detectability of a species is
often dependent on the sampling method. For
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example, bird surveys conducted during the
middle of the day will tend to under-represent
crepuscular species (Bibby et al. 1998), pitfall
traps used to collect spiders may over-represent
very active species (Topping and Sunderland
1992), and highly clumped plant species will
tend to appear uncommon in quadrat sampling
(Buckland et al. 2007).

Video surveys are becoming increasingly com-
mon in biological studies, particularly in marine
environments (Mallet and Pelletier 2014). Often
these surveys are designed for estimating the
abundance of individual species, but the data can
also be valuable for biodiversity research. Video
cameras offer a relatively unbiased view of fish
assemblages, compared to other gear types (e.g.,
Parker et al. 2016), and are able to collect large
amounts of visual data rather quickly. In systems
where individuals and species are abundant, such
as marine reefs, observations may be collected at
such a high rate that subsampling is necessary.
For various taxa, automated species identification
software is developing rapidly, allowing many
individuals to be quickly identified from video or
still images. But current programs can often iden-
tify only subsets of species (e.g., White et al. 2006,
Aguzzi et al. 2009, Kumar et al. 2012, Yu et al.
2013); thus, the number of datasets containing
counts of only subsets of the species present are
likely to grow. In video surveys in the Gulf of
Mexico and Atlantic coast of the Southeast United
States (SEUS) designed to estimate fish abun-
dance, resource limitations dictate that data be
subsampled with respect to both the number of
video frames analyzed, and the number of species
identified and enumerated. While the effect of
sampling fewer frames on biodiversity estimates
has been studied (Bacheler and Shertzer 2015), it
is not clear how limiting data analysis to a subset
of priority species affects the value of these data-
sets for biodiversity research.

Using a large video survey dataset from the
Gulf of Mexico, for sites where all fish species
observed were identified and counted, we
address three main questions: (1) How does the
number of species included in a reduced species
list affect the ability of the dataset to predict the
true diversity? (2) How do different patterns of
species selection affect list performance? (3) How
does the species selection method affect per-
ceived patterns in biodiversity? By answering

these questions, we provide insight into how
species selectivity of a sampling method affects
the value of a dataset to biodiversity research.

MATERIALS AND METHODS

Data collection
The Gulf of Mexico Video Survey (GOMVS)

dataset utilized in this study was produced by
the combined efforts of the Southeast Area Moni-
toring and Assessment Program (SEAMAP) Reef
Fish Survey and the Gulf of Mexico Marine Pro-
tected Area (MPA) Reef Fish Survey (www.sefsc.
noaa.gov). Methods of data collection and video
analysis were presented in detail by Campbell
et al. (2015) and are summarized below.
The surveys covered a broad area of the Gulf of

Mexico, from the US–Mexico border in Texas to
the Dry Tortugas islands in Florida, spanning
depths of 9–110 m (Fig. 1). The GOMVS dataset
included SEAMAP data from the periods 1995 to
1997 and 2001 to 2007 and MPA data from 2001 to
2007. Sampling locations were selected with a
two-stage sampling design, where first stratified
random sampling was used to select among
10-by-10-min fixed sampling blocks, and then,
sampling sites were randomly selected from pre-
viously identified reef habitat within each block.
At each site, a four-video-camera array (Sony
VX2000 DCR digital camcorders, Sony Corpora-
tion of America, New York, New York, USA) or a
chevron-shaped fish trap with one mounted video
camera was baited with squid and deployed dur-
ing daylight hours. Video cameras were posi-
tioned approximately 30 cm above the bottom
and recorded video for at least 20 min. In sites
with four-video-camera arrays, one video was
randomly chosen from among the videos facing
reef habitat. Experienced technicians viewed each
video for 20 min (beginning from the time that
the silt plume raised by the trap landing on the
sea bottom cleared), recorded times that each indi-
vidual fish entered and exited the video frame,
and identified each to the lowest taxonomic level.

Analysis
Data from the GOMVS were filtered to include

only videos for which all taxa observed on frame
were identified and counted, and which were
read for exactly 20 min. Only one video was ana-
lyzed per site. Though other taxa were sometimes
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observed (e.g., dolphins, sea turtles), we restricted
our analysis to fish taxa, which all fell within
classes Actinopterygii and Chondrichthyes.
Because fish passed in and out of the video field
and individuals were not easily identified if they
appeared multiple times in the video, fish were
not strictly counted. Instead, we used the Mean-
Count method (Schobernd et al. 2014) as a proxy
for counts of each species at each site, calculated
as the mean number of fish observed per second,
over the entire 20-min video. Multiple counting
methods have been developed for enumerating
species in videos, but we used the MeanCount
method because it has been shown to be
unbiased relative to true abundance (Schobernd
et al. 2013). In total, 2115 sites met our filtering
criteria, including videos recorded between 1995
and 2007, containing a total of 243 fish species
(Appendix S1: Table S1).

At each site, we calculated four common biodi-
versity metrics (hereafter, metrics). The first was
simply the number of species observed at a site,
or species richness (S; Magurran 2004). This
value is sometimes referred to as species density

(Gotelli 2008). The second was Margalef’s index
[M = (S � 1)/ln(N)], where N is the number of
individuals observed at a site, and S is the num-
ber of species observed at a site, which attempts
to compensate S for variation in sampling effort
and population density (Magurran 2004). The
third was one of the most commonly used met-
rics, Shannon’s index (H0 ¼ �P

pi lnðpiÞ), where
pi is the number of individuals of species i
observed. The fourth metric was Simpson’s index
(D ¼ P

p2i ), where pi is the number of individu-
als of species i observed, which quantifies the
probability that a pair of organisms drawn
randomly from an infinite community are from
the same species (Magurran 2004). Though many
other metrics exist, these were chosen due to
their common usage (Kenchington and Kench-
ington 2013), computational simplicity, and
dependence on a single data source.
To simulate the use of reduced species lists

(RSLs) in sampling fish communities, we filtered
the GOMVS dataset to include only species in a
particular RSL and then re-estimated metrics
at each site. The estimates were compared to
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Fig. 1. Map of all 2115 sampling sites (filled circle) in the Gulf of Mexico Video Survey dataset. Note that many
points overlap. Darker shading indicates deeper water. Contour lines are plotted at 20-, 50-, 100-, 500-, and 1000-
m isobaths. The white rectangle in the inset map outlines the area shown in the main map.
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metrics that were calculated based on all fish spe-
cies observed, which should be the closest avail-
able estimates of the actual fish biodiversity, and
are hereafter referred to as the true metrics.
(While these estimates may not represent true
fish biodiversity in the purest sense, they are the
best available estimates of the theoretical true
values in this dataset and are considered to be
true within the context of the analysis. Since they
are used as reference estimates, it should not
affect the results of the study if they differ from
theoretical true values. Furthermore, while there
is sampling selectivity associated with any sam-
pling method, it is possible that fish occupy sites
but are not visible to the camera, such as fish hid-
den by substrate or structure; for fish species
moving about in the water column within the
camera’s field of view, these estimates should be
reasonably close to true estimates.)

We identified three RSLs relevant to the
GOMVS dataset that were currently utilized
(hereafter, empirical RSLs). The first was a list of
122 species used by the GOMVS to reduce video
processing cost in recent years. The second was a
list of 107 species used by the largest video sur-
vey of reef fish in the SEUS Atlantic (SouthEast
Reef Fish Survey [SERFS]; www.sefsc.noaa.gov),
an adjacent region sharing most of the same spe-
cies. The third contained the 85 species in the US
Fish Stock Sustainability Index (FSSI; www.nmfs.
noaa.gov) found in the Gulf of Mexico. The fil-
tered GOMVS dataset included 103, 53, and 37
species from the GOMVS, SERFS, and FSSI lists,
respectively (Appendix S1: Table S1).

To quantify the retention of fish diversity infor-
mation using specific RSLs, we calculated non-
parametric same-site correlations (Spearman’s q)
between true (all species) and RSL-estimated met-
rics. High same-site correlation would suggest
that the RSL should perform well in biodiversity
studies, closely estimating the true values of bio-
diversity metrics. To evaluate the performance of
each empirical RSL, we conducted bootstrap
analysis comparing the observed same-site corre-
lations with a null distribution of same-site corre-
lations from 1000 randomly generated RSLs
containing the same number of species as each
empirical RSL. For example, if an empirical RSL
contained 50 species, then for each of 1000 boot-
strap replicates, 50 species would be randomly
drawn, without replacement, from the total list of

species observed in the dataset, to generate a ran-
dom RSL; the same-site correlation would then
be calculated for this RSL. Comparing the same-
site correlation of an empirical RSL with the cor-
responding bootstrap distribution allows one to
evaluate how they perform relative to randomly
devised lists. Lists with observed same-site corre-
lations above or below the 95% bootstrap confi-
dence intervals were considered high or low
performing, respectively. To measure the influ-
ence of each species i on RSL performance, we
calculated the change in correlation due to
excluding only that species as 1 � q(i), where q(i)
was the correlation for the list with only species i
removed.
To understand how to create an RSL that

would capture true patterns in biodiversity, we
sought to identify how the selection of species
affects performance (i.e., same-site correlation).
Although a number of factors influenced the
selection of species for the empirical lists, one
major factor was species commonness, or preva-
lence, since many of the species were chosen for
their importance to fisheries. Thus, we created a
species commonness gradient, by ranking all 243
species from most to least common, based on
their frequency of occurrence (Appendix S1:
Table S1), and we identified four methods of
selecting n species (where 1≤ n ≤ 243). These
methods involved choosing n species randomly,
at even intervals along the commonness gradient,
choosing the n most common species, or the n
least common species. For each method, and for
each value of n, we created an RSL, calculated val-
ues of each metric at each site, and then calculated
same-site correlations with true values. For the
random method, for each value of n we repeated
1000 times the process of selecting species and cal-
culating same-site correlations and then used the
1000 values to compute means and 95% confi-
dence intervals. This procedure produced a uni-
verse of same-site correlations for each metric, for
all possible RSLs for the three deterministic selec-
tions methods, and � 243,000 possible lists for the
random selection method. It thus provided broad
context for the performance of our empirical lists
and elucidated how the performance of hypothet-
ical lists varied among selection methods.
Because the overall goal was to understand

how the RSLs affect the value of a dataset for
biodiversity research, we evaluated common
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biodiversity hypotheses and examined the sensi-
tivity of results to the species list. For the three
empirical RSLs described above, we also tested
for dependence of each metric on latitude
(decimal degrees) or depth (meters) using linear
regression.

We further considered the relative robustness
of diversity metrics to the use of RSLs in these
tests with depth and latitude, with two simple
approaches. Aggregating results for lists of all
lengths, we calculated absolute relative errors of
the slopes of regression of each diversity metric
on each predictor [|(observed slope � true slope)/
true slope|]. Note that error rate can range from 0
to∞with lower values indicating better estimates
and a value of 0 indicating perfect estimation. We
also calculated the error rate in these hypothesis
tests as the proportion of the tests using RSLs that
did not agree with the true test result.

To investigate how apparent temporal trends
in biodiversity varied dependent on the RSL
used, we calculated total number of species, rar-
efied species richness, and asymptotic species
richness (i.e. Chao2 index; Chao 1989) for each
year, for all three empirical species lists, as well
as for the total dataset. Calculations of rarefied
species richness, Chao2, and corresponding 95%
confidence intervals were based on several
sources (Longino and Colwell 1997, Colwell
et al. 2004, Colwell 2013). Note that these time
series were developed for the purposes of our
methodological analysis only, were not standard-
ized, and were not intended to represent actual
trends in biodiversity in the Gulf of Mexico.

RESULTS

Metrics from RSLs with more species were
more highly correlated with true metrics (Fig. 2).
Bootstrap analysis showed that empirical RSLs
performed similar to random lists including the
same number of species, when estimating species
richness. The FSSI and SERFS lists (n = 85 and
107 species, respectively) outperformed many
randomly generated lists when estimating Mar-
galef’s index, while the GOMVS list still per-
formed similar to the average random list. For
Shannon’s and Simpson’s indices, all empirical
lists outperformed most random lists of their
same lengths (Fig. 3). Correlations generally
increased with the number of species included in

the reduced list. For all metrics, confidence inter-
vals around the mean correlation of the random
lists overlapped for all empirical RSLs.
When we generated a broader universe of

hypothetical lists, it became evident that RSL
performance tended to increase across the entire
range of n species, for all metrics and selection
patterns (Fig. 4). The functional relationships
between correlation and number of species dif-
fered widely among selection methods, but were
quite similar among metrics. When the most
common species were preferentially included in
RSLs, correlations increased very rapidly with
number of species initially, but gains in perfor-
mance then diminished. For all diversity metrics,
a q of 0.9 was reached once a list contained the
49 most common species. By contrast, lists com-
posed of the least common species generally per-
formed very poorly until they contained a large
number of species. For this selection pattern, a q
of 0.9 was not reached by all metrics until the list
contained the 242 least common species. The per-
formance of lists chosen by even selection was
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similar to the mean performance of lists chosen
randomly, across the entire range of n species,
always falling within the 95% confidence inter-
vals around mean q. Both selection methods
performed much better than preferential selec-
tion of uncommon species; however, correlations
did not reach 0.9 for all metrics until lists
included 175 species for even selection and 194
species for random selection. When species were

individually removed from the total dataset, the
greatest decreases in correlation tended to be
associated with the removal of the most common
species. The five most common species were red
porgy (Pagrus pagrus), scamp (Mycteroperca phe-
nax), almaco jack (Seriola rivoliana), red snapper
(Lutjanus campechanus), and greater amberjack
(Seriola dumerili), respectively (Appendix S1:
Table S1; Fig. 5).
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In the total dataset, all metrics decreased signifi-
cantly with depth; thus, diversity was higher at
shallower sites. When conducting this same
hypothesis test with datasets employing RSLs,
results varied widely (Fig. 6). For all selection
methods, longer lists were more likely to yield the

true result. Even selection correctly identified the
significant negative slopes most of the time, but
misidentified positive slopes when very few spe-
cies were included. Random selection followed
roughly the same trend as the even selection
results. With the least common species, many lists
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of fewer than 60 or so species failed to identify the
negative slope for all metrics; lists that included
all but the most common species achieved the cor-
rect qualitative result, but tended to estimate more
steeply negative slopes. Unexpectedly, the shortest
lists including the most common species incor-
rectly identified a significant positive relationship

with depth for all metrics. Regarding the empirical
lists, the GOMVS list correctly identified the nega-
tive slope for all metrics, while the SERFS list
never did, and the FSSI list only yielded the cor-
rect result for Margalef’s index.
In the total dataset, species richness and Mar-

galef’s index decreased significantly with latitude;
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however, no significant relationship was observed
for Shannon’s or Simpson’s index (Fig. 7). These
correct results were obtained when using RSLs
based on even selection of species, but many lists
failed to identify a trend or incorrectly yielded the
opposite trend. In these comparisons, incorrect

results were common for long and short lists. For
randomly selected lists, only the longest lists con-
sistently identified the correct results for species
richness and Margalef’s index, but lists of all
lengths tended to yield a non-significant slope for
Shannon’s and Simpson’s indices.
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Selecting the few most common species incor-
rectly yielded significant positive relationships
with latitude, some of which were quite strong
(Fig. 7). For species richness and Margalef’s
index, lists composed of an intermediate number
of the most common species failed to identify
any trend, but longer lists of approximately 100
or more species correctly identified the negative
slope. For Shannon’s index, the correct result of
no trend was identified by lists longer than about
90 species, while for Simpson’s index only the
longest lists yielded the correct result. For all
metrics, shorter lists of the least common species
tended not to identify a trend, but most longer
lists yielded significant negative slopes. These
results were correct for species richness and Mar-
galef’s index, but incorrect for Shannon’s and
Simpson’s indices, except for lists containing
nearly all species. As in linear regressions with
depth, lists containing all but the most common
species produced the most steeply negative rela-
tionships with latitude, dramatically overesti-
mating the strength of the true relationship.

For all metrics, both the FSSI and SERFS lists
incorrectly identified significant positive slopes
(Fig. 7). The GOMVS lists failed to identify the
true negative relationships for species richness
and Margalef’s index, but yielded correct results
for Shannon’s and Simpson’s indices.
None of the diversity metrics appeared to be

more robust to the use of RSLs than any other.
Absolute relative errors of regression slopes were
quite variable for each metric, ranging from 0.02
to 2.86 (Table 1). However, absolute relative errors
did show a clear ranking of selection methods,
with selection of the most common species yield-
ing the most accurate slope estimates (i.e., lowest
absolute relative error), random and even selec-
tion methods demonstrating intermediate accu-
racy, and selection of the least common species
exhibiting the lowest accuracy. This simple rank-
ing agreed with our interpretation of Figs. 6 and
7, but did not reflect the complex relationships
evident there. Error rates for tests of regression
slopes were fairly low overall, with a median of
0.23 and 75th percentile of 0.33 (Table 2).

Table 1. Median absolute relative errors [|(observed � true)/true|] for slopes of regression of diversity metrics on
depth or latitude.

Predictor Method Species richness Margalef Shannon Simpson

Depth Random 0.5 (0.5) 0.47 (0.51) 0.24 (0.46) 0.04 (0.3)
Depth Even 0.52 (0.56) 0.47 (0.57) 0.3 (0.5) 0.29 (0.45)
Depth Low 0.9 (0.34) 0.93 (0.34) 0.87 (0.49) 0.8 (0.44)
Depth High 0.1 (0.33) 0.09 (0.3) 0.02 (0.15) 0.02 (0.08)
Latitude Random 0.5 (0.5) 0.42 (0.43) 1.23 (1.26) 0.77 (0.96)
Latitude Even 0.67 (0.91) 0.5 (0.76) 1.15 (1.78) 0.63 (0.84)
Latitude Low 0.92 (0.44) 0.98 (0.38) 2.86 (7.36) 2.05 (3.54)
Latitude High 0.45 (1.5) 0.36 (1.19) 0.77 (2.64) 0.17 (0.64)

Notes: Interquartile ranges (3rd quartile–1st quartile) are in parentheses. Rows represent unique combinations of predictor
and method.

Table 2. Error rates of hypothesis tests for regression of diversity metrics on depth or latitude.

Predictor Method Species richness Margalef Shannon Simpson

Depth Random 0.18 0.15 0.21 0.23
Depth Even 0.06 0.05 0.05 0.06
Depth Low 0.11 0.25 0.29 0.29
Depth High 0.06 0.06 0.06 0.06
Latitude Random 0.95 0.88 0 0
Latitude Even 0.28 0.26 0.33 0.47
Latitude Low 0.08 0.28 0.64 0.63
Latitude High 0.33 0.23 0.36 0.71

Notes: Numerical values represent the proportion of hypothesis test results that do not match the true result, when testing
the significance of slopes of regressions of diversity metrics on each predictor. Rows represent unique combinations of predictor
and method.
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Time series of total species richness and rar-
efied species richness showed that trends based
on RSLs reflected many of the main features of
the true time series, but trends in the true time
series of asymptotic species richness were much

less evident in the RSL time series. Variation
among years was lower in lists with fewer spe-
cies (Fig. 8B, D, and F), which had an overall
effect of reducing apparent changes in diversity
over time (Fig. 8A, C, and E). In some cases,
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differences in diversity between consecutive
years (i.e., non-overlapping confidence intervals)
present in the total dataset were not evident in
shorter RSLs, such as in rarefied species richness
from 2006 to 2007 (Fig. 8C) and in asymptotic
species richness from 1995 to 1996, 2002 to 2003,
and 2006 to 2007 (Fig. 8E). Somewhat surpris-
ingly, variation within years also tended to
decrease for RSLs with fewer species. Thus in
some cases, differences in diversity between
consecutive years were evident in one or more of
the RSL-based trends, but not in the trend based
on the total dataset, such as in rarefied species
richness from 2001 to 2002 and 2003 to 2004
(Fig. 8C) and in asymptotic species richness from
2003 to 2004 (Fig. 8E). These were false differ-
ences representing statistical type I errors (Quinn
and Keough 2003).

DISCUSSION

We found that including more species in a
reduced species list generally resulted in more
accurate predictions of biodiversity. The pattern
of species selection also had a large effect on RSL
performance. Based on correlations alone, the
best way to select species for an RSL seemed to
be including at least the most common species.
We also observed that the relationships between
RSL length and performance were nonlinear, dif-
fering substantially between selection methods.
For example, when preferentially selecting com-
mon species, increases in correlation were rapid
for the most common species and then dimin-
ished quickly once these were included.

In the Gulf of Mexico reef fish data, including
only the 49 most common species yielded corre-
lations of at least 0.9 for all metrics. Thus, it
might seem that the remaining 194 species could
be excluded when describing trends in biodiver-
sity. However, the results of our hypothesis tests
indicated the need to include even more species.
Considering relationships between biodiversity
and depth, an RSL with the 49 most common
species was able to detect the significant decrease
in diversity with depth, but the estimated rela-
tionship (i.e., slope) was not as strong as the true
relationship. The situation was substantially
worse when investigating latitudinal trends in
biodiversity. For all metrics, an RSL with the 49
most common species resulted in the incorrect

result of a significant positive slope. In fact, it
was not until 184 of the most common species
were counted that all metrics consistently
yielded the true result, with Simpson’s index
requiring the longest list of species to agree with
the estimate from the total dataset. These results
were very consistent among diversity metrics, as
none appeared to be more robust to the use of
RSLs than any other.
These results suggest that it is generally prefer-

able to avoid using RSLs when collecting data
intended for biodiversity research, because anal-
yses based on the filtered data may not represent
true patterns in the entire community. However,
when resource limitations require the use of
RSLs, as in reef fish surveys in the SEUS, it
becomes necessary to assess the utility of the fil-
tered dataset, and devise efficient ways to
improve the data if necessary. It seems clear that
neither the FSSI nor the SERFS list captures
enough of the variability in the video data to be
reliable for use in studying true biodiversity of
reef fish communities in the Gulf of Mexico.
However, the list currently used on this survey
(GOMVS) fared considerably better. It did fail to
detect decreases in species richness and Mar-
galef’s D with latitude, but agreed with the true
results on all other tests, and followed temporal
trends fairly well.
Performance in biodiversity studies would

likely be improved by adding common species to
the list. As tests of trends with depth and latitude
showed, RSLs that excluded only a few of the
most common species dramatically underesti-
mated the true slopes of these relationships
(Figs. 6 and 7). Unfortunately, the most common
species tend to be the most time-consuming to
count, so there is a clear conflict between accu-
racy and efficiency.

Implications for other sampling methods
Every sampling method tends to have a unique

species selectivity profile (e.g. Sorensen et al.
2002, McClanahan and Mangi 2004), where the
probability of observing an individual with that
method differs for each species. Species selectiv-
ity of a sampling method is often directly depen-
dent on the ecology or morphology of a species.
For instance, aerial hand collecting of forest spi-
ders favors understory species (Sorensen et al.
2002), and small mesh mist nets catch more

 ❖ www.esajournals.org 13 July 2017 ❖ Volume 8(7) ❖ Article e01842

KLIBANSKY ET AL.



small- than large-bodied birds (Heimerdinger
and Leberman 1966, Pardieck and Waide 1992).
But such traits often correlate with the common-
ness of species and therefore so does species
selectivity. A study on insects shows that rare
species are less likely to be caught in small pitfall
traps (Work et al. 2002); research on fish shows
that the most common species (Leptoscarus
vaigiensis) in pooled samples was completely
missed by one of the six methods used (McClana-
han and Mangi 2004). In another study, inexperi-
enced volunteers were shown to be less likely
than experienced observers to detect uncommon
insect species (Fitzpatrick et al. 2009).

Each RSL we generated can be thought of as
the selectivity profile of a hypothetical sampling
method. The video survey data we used also
have an underlying selectivity profile, but it is
constant across all comparisons and therefore
does not affect our results. Our results showed
that it was important for RSLs to contain a lot of
species, suggesting that other sampling methods
in biodiversity studies should be as unselective
as possible. To the degree that they are selective,
methods that miss very common species will be
the most problematic, regardless of the diversity
metric. This is especially evident given that lists
including all but the two or three most common
species sometimes failed to detect the true rela-
tionships between diversity metrics and latitude
(Fig. 7). Methods that fail to detect rare species
should tend to be less problematic. However, fail-
ure to detect rare species would be a critical prob-
lem for asymptotic species richness estimators
such as the Chao2 index (Chao 1989), which rely
heavily on observations of rare species.

Our results for lists generated based on ran-
dom selection of species should be especially
informative to studies using other sampling
methods, because they are only defined by the
number of species included. Therefore, any
method that captures a given number of reef fish
species in the region we studied should be
roughly represented in our plots of simulated
lists. For example, by sampling with gear such as
longlines or trawls capable of catching any 200
Gulf of Mexico reef fish species, it seems reason-
able to expect that the strong negative relation-
ship between depth and biodiversity would be
detected. At the same time, because so many lists
including 200 species did not identify the true

relationship between biodiversity metrics and
latitude, one may not be very confident in that
dataset for identifying weaker latitudinal trends.

Considering species selectivity when interpreting
results
When a dataset has already been collected, or

it is otherwise not possible to use a unselective
sampling method, biodiversity estimates from
different sampling methods should be treated
independently. One may then continue to inter-
pret trends in biodiversity for that sampling
method alone, as an index of a particular part of
a community, but not expect it to represent true
biodiversity. This is similar to the caveat from
Gotelli (2008) that comparing diversity estimates
from rarefaction curves based on different sam-
pling methods is invalid. Problems comparing
diversity estimates from different methods are
also reflected in observations by Abele and Wal-
ters (1979) in a reevaluation of earlier studies.
Reconsidering our comparisons of biodiversity

and latitude from this alternative perspective, we
observe that for sampling methods that capture
only small numbers (<50) of the most common
species, biodiversity increases with latitude. This
is not the same trend that exists in the broader
community, but might be the relevant trend in
certain contexts. For instance, this might suggest
that higher latitudes are also more valuable to
human user groups attracted to both abundance
and diversity of species, such as recreational
divers. By contrast, reefs with high diversity
may be of low value to fishers trying to avoid
bycatch.

CONCLUSIONS

When attempting to estimate true diversity of
an ecological community, filtering data through
the use of RSLs may obscure true patterns and
should therefore be avoided. When such lists
must be used, they should include as many spe-
cies as possible, especially common species. By
extension, even when not explicitly filtering out
species in a dataset, sampling methods should be
as unselective of species as possible. When sam-
pling methods are very species selective, results
should not be extrapolated to the broader ecolog-
ical community, but should only be interpreted
to represent the list of species sampled.
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